The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models

Author:

Pestano-Gabino Celina1,González-Concepción Concepción1,Candelaria Gil-Fariña María1

Affiliation:

1. Departamento de Economía Aplicada y Métodos Cuantitativos, Universidad de La Laguna (ULL), 38071 Campus de Guajara, La Laguna, SPAIN

Abstract

Some methods for estimating VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. Some authors suggest taking a larger dimension than theoretically necessary for this matrix. If the data sample is populous enough and the Hankel matrix dimension is unnecessarily large, this may result in an unnecessary number of computations, as well as in worse numerical and statistical results. We provide some theoretical results to know which is the Hankel matrix with the lowest dimension that is theoretically necessary and illustrate, with several simulated VARMA models, that using a dimension of the Hankel matrix greater than the theoretical minimal dimension proposed as valid does not necessarily lead to improved estimates. Although we use two algorithms, our main contributions are independent of the estimation method considered. We note that our paper does not include any comparisons between different algorithms for estimating VARMA models, as this is not our aim.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3