Penalized Likelihood Parameter Estimation in the Quasi Lindley and Nadarajah-Haghighi Distributions

Author:

Hamada Marwa Mohamed1,Mahmoud Mahmoud Raid1,Mandouh Rasha Mohamed1

Affiliation:

1. Department of Mathematical Statistics, Cairo University, Faculty of Graduate Studies for Statistical Research, Cairo, EGYPT

Abstract

The issues of performing inference on the parameters of quasi-Lindley (QL) distribution and Nadarajah-Haghighi exponential distribution (N-H) is addressed. It is shown graphically that the likelihood function of the quasi-Lindley distribution and Nadarajah-Haghighi exponential distribution is configured with a flat monotone shape. Which makes it very difficult to pick the values of the parameters that maximize the likelihood function. A penalization scheme is used to improve maximum likelihood point estimation. A penalization scheme based on the Jeffreys prior.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Reference7 articles.

1. F.M. Almeida , E.A. Colosimo, V.D. Mayrink, Prior specifications to handle the monotone likelihood problem in the Cox regression model, Statistics and Its Interface, Vol.11, pp.687-698, 2018.

2. V.M.C. Lima, F. Cribari-Neto, Penalized Maximum Likelihood Estimation in the Modified Extended Weibull Distribution, Communications in Statistics - Simulation and Computation, Vol.48, pp.334-349, 2017. DOI: 10.1080/03610918.2017.1381735.

3. R. Shanker, A. Mishra, A quasi Lindley distribution, African Journal of Mathematics and Computer Science Research, Vol.6, No.4, pp.64-71,2013. DOI: 10.5897/AJMCSR12.067.

4. D. Firth, Bias reduction of maximum likelihood estimates, Biometrika, Vol.80, No.1, pp.2738, 1993.

5. J. Orloff, J. Bloom, Bootstrap confidence intervals, Retrieved from MIT Open Course Ware, 2014,[Online]. https://ocw.oouagoiwoye.edu.ng/courses/math ematics/18-05-introduction-to-probabilityand-statistics-spring2014/readings/MIT18_05S14_Reading24.pdf (Accessed Date: March 2, 2024).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3