Affiliation:
1. Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical Research, Cairo University, EGYPT
Abstract
Few estimation methods were discussed to handle the missing data problem in the panel data models. However, in the panel vector autoregressive (PVAR) model, there is no estimator to handle this problem. The traditional treatment in the case of incomplete data is to use the generalized method of moment (GMM) estimation based on only available data without imputation of the missing data. Therefore, this paper introduces a new GMM estimation for the PVAR model in case of incomplete data based on the mean imputation. Moreover, we make a Monte Carlo simulation study to study the efficiency of the proposed estimator. We compare between two GMM estimators based on the mean squared error (MSE) and relative bias (RB) criteria. The first is the GMM estimation based on the list-wise (LW) and the second is the GMM estimation using the mean imputation (MI) at multi-missing levels. The results showed that the MI estimator provides more efficiency than the LW estimator.
Publisher
World Scientific and Engineering Academy and Society (WSEAS)