On Generalised Hankel Functions and a Bifurcation of Their Asymptotic Expansion

Author:

Campos L. M. B. C.1,Silva M. J. S.1

Affiliation:

1. CCTAE, IDMEC, LAETA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, PORTUGAL

Abstract

The generalised Bessel differential equation has an extra parameter relative to the original Bessel equation and its asymptotic solutions are the generalised Hankel functions of two kinds distinct from the original Hankel functions. The generalised Bessel differential equation of order ν and degree μ reduces to the original Bessel differential equation of order ν for zero degree, μ = 0. In both cases the differential equations have a regular singularity near the origin and the the point at infinity is the other singularity. The point at infinity is an irregular singularity of different degree, namely one for the original and two for the generalised Bessel differential equation. It follows that in the limit of degree being equal to zero the generalised Hankel functions do not converge to the original ones. The implication is that the generalised Bessel differential equation has a Hopf-type bifurcation for the asymptotic solution. In the case of a real variable and parameters the asymptotic solution is: (i) oscillatory when the degree of generalised Hankel function is zero (corresponding in this case to original Hankel functions); (ii) diverging hence unstable for the generalised Hankel functions with positive degree; (iii) decaying hence stable for the generalised Hankel functions with negative degree.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Reference67 articles.

1. D. Bernoulli, Theoremata de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae, Comment. Acad. Sci. Imp. Petropol. 6 (1732–1733) 108–122.

2. L. Euler, De motu vibratorio tympanorum, Novi Comment. Acad. Sci. Imp. Petropol. 10 (1764) 243–260.

3. F. W. Bessel, Untersuchung des Theils der planetarischen Störungen, welcher aus der Bewegung der Sonne entsteht, Abh. Math. Kl. K. Akad. Wiss. Berlin 10 (1824) 1–52.

4. C. G. Neumann, Theorie der Bessel’schen Funktionen. Ein Analogon zur Theorie der Kugelfunctionen, BG Teubner Verlag, Leipzig (Germany), 1867.

5. G. N. Watson, A treatise on the theory of Bessel functions, 2nd Edition, Cambridge University Press, Cambridge (UK), 1966.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3