A Survey of De Casteljau Algorithms and Regular Iterative Constructions of Bézier Curves with Control Mass Points

Author:

Garnier Lionel1,Bécar Jean-Paul2,Druoton Lucie3

Affiliation:

1. L.I.B., University of Burgundy, B.P. 47870, 21078 Dijon Cedex, FRANCE

2. U.P.H.F. - Campus Mont Houy - 59313 Valenciennes Cedex 9, FRANC

3. I.U.T. of Dijon, University of Burgundy, B.P. 47870, 21078 Dijon Cedex, FRANC

Abstract

Drawing a curve on a computer actually involves approximating it by a set of segments. The De Casteljau algorithm allows to construct these piecewise linear curves which approximate polynomial Bézier curves using convex combinations. However, for rational Bézier curves, the construction no longer admits regular sampling. To solve this problem, we propose a generalization of the De Casteljau algorithm that addresses this issue and is applicable to Bézier curves with mass points (a weighted point or a vector) as control points and using a homographic parameter change dividing the interval [0, 1] into two equal-length intervals [0, 1/2] and [1/2 , 1] . If the initial Bézier curve is in standard form, we obtain two curves in standard form, unless the mass endpoint of the curve is a vector. This homographic parameter change also allows transforming curves defined over an interval [α, +∞], α ∈ R, into Bézier curves, which then enables the use of the De Casteljau algorithm. Some examples are given: three-quart of circle, semicircle and a branch of a hyperbola (degree 2), cubic curve on [0; +∞] and loop of a Descartes Folium (degree 3) and a loop of a Bernouilli Lemniscate (degree 4).

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Reference19 articles.

1. P. Bézier. Courbe et surface, volume 4. Hermès, Paris, 2ème edition, Octobre 1986.

2. P. De Casteljau. Mathématiques et CAO. Volume 2 : formes à pôles. Hermes, 1985.

3. Gerald Farin. From conics to nurbs: A tutorial and survey. IEEE Comput. Graph. Appl., 12(5):78–86, September 1992.

4. E.T.Y. Lee. The rational Bézier representation for conics. In G. Farin (ed.), editor, In Geometric Modeling, Algorithms and New Trends, SIAM, pages 3–19, Philadelphia, 1985.

5. G. Farin. Curves And Surfaces. Academic Press, 3ème edition, 1993.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3