Numerical Study of Bio-Inspired Corrugated Airfoil Geometry in a Forward Flight at a Low Reynolds Number

Author:

Dwivedi Yagya Dutta1,Y. B. Sudhir Sastry2,Sunil Bdy1,Moorthy Ch. V. K. N. S. N.3,Allamraju K. Viswanath1

Affiliation:

1. Department of Aeronautical Engineering, Institute of Aeronautical Engineering, Dundigal, Hyderabad, Telangana, 500043, INDIA

2. Department of Aerospace Engineering, International Institute of Aerospace Engineering and Management, Jain Deemed to be University, Bengaluru, 562112, INDIA

3. Vasavi College of Engineering, Ibrahimbagh, Hyderabad, Telangana, 500031, INDIA

Abstract

In this study, the effects of variations in the parametric geometry on the aerodynamic efficiency and longitudinal static stability of a bio-inspired airfoil were assessed using the computational method at a low Reynolds number of 80000. The investigation aims to recognize the influence of corrugations on aerodynamic forces and moments and compare them with a non-corrugated profile having similar geometry without corrugations. Three different airfoils were chosen, the first triangular peaked corrugated is inspired from the mid-section of a dragonfly wing, the second modified simplified corrugated is a different form of the dragonfly wing section, which was modified to match the maximum thickness of the first airfoil, and the third is a non-corrugated Hybrid airfoil obtained by joining the peaks of the second airfoil. These three models were fabricated using an additive manufacturing process to undertake the experimental work in a low subsonic wind tunnel to find aerodynamic characteristics. ANSYS FLUENT solver was applied to unravel the steady, laminar, incompressible, two-dimensional, RANS equations. The tests were performed for 4 to +20 degrees angle of attack at a Reynolds number of 80,000. The result revealed that the Hybrid airfoil is suitable only for up to a 4-degree angle of attack. The modified simple corrugated airfoil produced significant aerodynamic performance at high angles of attack than the other two tested airfoils. The flow field study also showed the same results. Results are validated with experimental work and also with existing literature.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3