Mathematical Modeling and Forecasting the Spread of an Oil Spill using Python

Author:

Kastrounis Nikolaos1,Manias George2,Filippakis Michael2,Kyriazis Dimosthenis2

Affiliation:

1. Department of Mechanical Engineering, Frederick University, Nicosia 1036, CYPRUS

2. Department of Digital Systems, University of Piraeus, Piraeus, GREECE

Abstract

This is a comprehensive paper on the oil spill phenomenon on what mechanisms change the oil spill displacement, what Computational Fluid Dynamic (CFD) applications of Finite Volume and Eulerian/Lagragian equations are used to solve oil-spill simulations and to provide a brief analysis of the models used. An oil spill is defined as a form of pollution caused by human activity and as the discharge of liquid petroleum hydrocarbons into the environment, mainly in the marine eco-system. This description is commonly used for marine oil spills, where the hydrocarbons are discharged into the ocean or coastal waters, but they can also occur inland. Oil spills occur because of discharges of hydrocarbons from platforms, rigs, wells, tankers and from refined petroleum products along with their by-products, also from heavier fuels. Thus, oil spill simulation is used to predict transport and weathering processes. State-of-the-art tools such as OILMAP, TRANSAS, OILFLOW2D, OSCAR and ANSYS, work by simulating the processes mentioned prior. In contrary to these tools, the aim of this paper is to provide a comparison of the weathering models used and propose a mathematical model using python to predict the spreading phenomenon of an oil spill.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of CO2 injection in oil field;2023 8th International Conference on Mathematics and Computers in Sciences and Industry (MCSI);2023-10-14

2. Synthesis of graphene/hollow carbon fiber composite aerogels for oil spill cleanup;Mendeleev Communications;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3