Validation of a Mathematical-Based Model for the Rheological Characterization of Asphalt Mixtures

Author:

Martinez Fernando1,Cauhape Marina1,Zorzutti Luis1,Angelone Silvia1

Affiliation:

1. Road Laboratory, Institute of Applied Mechanics and Structures, National University of Rosario, Riobamba & Berutti, (2000) Rosario, ARGENTINA

Abstract

Asphalt mixtures are viscoelastic materials whose behavior is highly dependent on temperature and loading frequency. The influence of these factors is described through master curves constructed at a given reference temperature based on the principle of frequency-temperature superposition. These curves are used as inputs in asphalt pavement design procedures based on mechanistic principles and related to their in-service pavement performance. This paper proposes the application of the Kramers-Kronig (K-K) relations to characterize the rheological properties of asphalt materials using a mathematical approach. Due to the complexity of the integration of the K-K relations, an approximate solution of the K–K relations was used to develop a Mathematical-Based Model to predict the master curves for the Dynamic Modulus |E*| and the Phase Angle f. This model was validated using the experimental results of two different asphalt mixtures with different characteristics. The results indicate that the model is accurate, and could be an effective approach to mathematically predict the master curves of the asphalt mixture viscoelastic properties in a wide range of temperatures and frequencies.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3