Affiliation:
1. Mechanical Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Maan, 71110 Maan, JORDAN
Abstract
Concentrated solar power (CSP) is one of the main technologies used. Thus, the object of research is the different concentrated solar power technologies. Moreover, this study aimed to compare the different concentrated solar power technologies in terms of their efficiency, cost, concentration ratio, and receiver temperature. Results showed that technologies were arranged according to high to low temperatures: the parabolic dish reflector, central receiver collector, linear Fresnel reflector, and parabolic trough collector. As well as, in this study, ranges of the heat transfer fluids are compared with each other by using exergy and energy analysis. The heat transfer fluids that are examined are liquid sodium, molten salt (60 % NaNO3, 40 % KNO3), supercritical carbon dioxide (sCO2), water/steam, and air. Results showed that the liquid sodium at an elevated temperature range of (540–740 °C) is performed the best, with exergy efficiency of 61% of solar-to-fluid, the best liquid sodium case is at (do=10.3 mm, nbanks = 1, Δprec= 7.72 bar, ηΠ = 45.47 %) has been found. Finally, vas a positive and effective approach to solving the energy problems.
Publisher
World Scientific and Engineering Academy and Society (WSEAS)
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献