Entropy Generation in a Magnetohydrodynamic Hybrid Nanofluid Flow over a Nonlinear Permeable Surface with Velocity Slip Effect

Author:

Salawu S. O.1,Ogunseye H. A.2,Yusuf T. A.3,Lebelo R. S.4,Mustapha R. A.5

Affiliation:

1. Department of Mathematics, Bowen University, Iwo, NIGERIA

2. West Virginia Academy, Al Wukair, Doha, QATAR

3. Department of Mathematics, Adeleke University, Ede, NIGERIA

4. Education Department, Vaal University of Technology, Vanderbijlpark, SOUTH AFRICA

5. Department of Mathematics, Lagos State University, Lagos, NIGERIA

Abstract

The current study is designed to model the hydrothermal feature of a hybrid nano liquid slip flows over a permeable expanding/contracting surface with entropy generation. The model incorporates Cu-Al2O3 nanoparticles with water as the host liquid to simulate the flow. Additional impacts incorporated into the novelty of the model are viscous dissipation and Joule heating. The model is transformed appropriately to its dimensionless form using similarity quantities and the solution is numerically obtained using the spectral quasi-linearization method (SQLM). The impact of pertinent factors on the flow characteristics is communicated through graphs for the hybrid nano-suspension to discuss the hydrothermal variations. The friction factor and the rate of heat transport are also discussed with sensible judgment through tables. To ensure the code validity, a comparison with earlier studies is conducted and excellent consensus is accomplished. The result explored that diminution in the irreversibility ratio is witnessed for rising magnetic field strength along the free stream, distance away from the permeable surface as the heat dissipation to the surrounding decelerates. Also, the augmented nonlinearity parameter intensified the heat transfer rate for about 2.79% of the hybrid nano-suspension.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3