An Efficient Convolutional Neural Network Model for Brain MRI Segmentation

Author:

El Kader Isselmou Abd1,Xu Guizhi1,Shuai Zhang1,Brahim El Maalouma Sidi2,Saminu Sani1

Affiliation:

1. School of Health Science and Biomedical Engineering, Hebei University of Technology. Tianjin City, CHINA

2. College of Engineering, Zhejiang Normal University, Jinhua City, CHINA

Abstract

Medical image analysis is a very interesting research area, and it is a significant challenge for researchers. Due to the complexity of the brain structure, accurate diagnosis of brain tumors is extremely difficult. In recent years, research focused on medical image processing to solve this problem by relying on deep learning techniques, and it has achieved good results in this field. This paper proposes an efficient convolutional neural network model for MR brain image segmentation and analysis. The novel model consists of segmentation efficient-CNN and pre-efficient-CNN blocks for dataset diminution and improvement blocks. The unique efficient-CNN is specially designed according to the model proposed by ASCNN (application) CNN-specific) to perform unidirectional and transverse feature extraction and tumor and pixel classification. The recommended Full-ReLU activation feature halves the number of cores in a high-coil filtered winding layer without reducing process quality. In this specific efficient-CNN consists of 8 convolutional layers and 110 kernels. The experiment results were done using the MR brain database from the Arizona university, including eluding with and without tumor images. The proposal model achieved an accuracy of 97.2% to 98%, which proves the efficiency of the model and its ability to assist in the early diagnosis of brain tumors with sufficient accuracy to support the doctors' decision during diagnosis.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alteration of the blood-brain barrier by COVID-19 and its implication in the permeation of drugs into the brain;Frontiers in Cellular Neuroscience;2023-03-14

2. Control theory tools for best understanding brain Learning Disorders;2022 7th International Conference on Mathematics and Computers in Sciences and Industry (MCSI);2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3