Discrete Type SIR Epidemic Model with Nonlinear Incidence Rate in Presence of Immunity

Author:

Parvin Tahera1,Islam Ariful2,Kumar Mondal Pankaj2,Biswas Haider Ali2

Affiliation:

1. Mathematics Discipline Khulna University Khulna-9208, Bangladesh.

2. Mathematics Discipline Khulna University Khulna-9208, Bangladesh

Abstract

Mathematical modeling is very important to describe the dynamic behavior of biological and biomedical systems. The SIR model is the most common mathematical model of epidemics. An epidemic occurs if the number of people infected with a disease is increasing in a population. A numerical discretization for an SIR epidemic model is discussed, where the incidence rate is assumed to be Beddington-DeAngelis type. In particular, we reconsider a SIR epidemic model with Non Linear incidence and treatment rate derived by (Dubey et al. 2015) [1]. We applied Euler method to discretize this model. This discretization leads to a numerical scheme which can be considered as a discrete system. Then we analyzed the dynamics of the obtained discrete system. We developed the model with the focus on the concentration of the basic reproduction number and related stability analysis for the disease-free and endemic equilibrium points. Finally, We have performed numerical simulations to illustrate the disease behavior

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3