Exploiting Eye Colors for Better Iris Segmentation in Visible Wavelength Environments

Author:

Sahmoud Shaaban1ORCID

Affiliation:

1. FATİH SULTAN MEHMET VAKIF ÜNİVERSİTESİ

Abstract

Iris segmentation is a crucial step in iris recognition systems. Iris segmentation in visible wavelength and unconstrained environments is more challenging than ‎segmenting iris images in ideal environments. This paper proposes a new iris segmentation method that exploits the color of human eyes to segment the iris region more accurately. While most of the current iris segmentation methods ignore the color of the iris or deal with ‎grayscale eye images directly, the proposed method takes benefits from iris color to simplify the iris segmentation step. In the first step, we estimate the expected iris center using Haar-like features. The iris color is detected and accordingly, a color-convenient segmentation algorithm is applied to find the iris region. Dealing separately with each iris color set significantly decreases the false segmentation errors and enhances the performance of the iris recognition system. The results of testing the proposed algorithm on the UBIRIS database demonstrate the robustness of our algorithm against different noise factors and non-ideal conditions.

Publisher

Marmara University

Reference44 articles.

1. [1] Kak, N., Gupta, R., & Mahajan, S. (2010). Iris recognition system. International Journal of Advanced Computer Science and Applications, 1(1), 34-40.

2. [2] Daugman, J. (2001). Statistical richness of visual phase information: update on recognizing persons by iris patterns. International Journal of computer vision, 45(1), 25-38.

3. [3] Daugman, J. (2004). Iris recognition border-crossing system in the UAE. International Airport Review, 8(2).

4. [4] Chen, J., Shen, F., Chen, D. Z., & Flynn, P. J. (2016). Iris recognition based on human-interpretable features. IEEE Transactions on Information Forensics and Security, 11(7), 1476-1485.

5. [5] Thepade, D. S., & Mandal, P. R. (2014). Novel iris recognition technique using fractional energies of transformed iris images using haar and kekre transforms. International Journal of Scientific & Engineering Research, 5(4).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3