Affiliation:
1. KARABÜK ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ
2. KARABÜK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ
Abstract
The effects of the hot air inlet velocity and hot air inlet temperature on the hot side temperature, the temperature difference between the hot and cold sides, and the heat transfer rate on the hot side of a thermoelectric module (TEM) were investigated by computational fluid dynamics (CFD) analyzes. As a result of CFD analysis, the maximum hot side temperature, the temperature difference between the hot and cold sides, and the average heat transfer rate on the hot side of the TEM are found to be 274.9 °C, 70.4 °C, and 33.8 W, respectively, at 15 m/s of hot air inlet velocity. Besides, the maximum hot side temperature, the temperature difference between the hot and cold sides, and the average heat transfer rate on the hot side of the TEM are determined to be 432.8 °C, 114.9 °C, and 55.1 W, respectively, for 800 °C of hot air inlet temperature at 15 m/s of hot air inlet velocity. As a result, increasing the hot air inlet velocity and inlet temperature increases the hot side temperature, the temperature difference between the hot and cold sides, and the heat transfer rate on the hot side of the TEM.