rGO'nun P. Chrysosporium'un Mikrobiyal Aktivitesi Üzerindeki Etkisinin İncelenmesiyle Grafen Bazlı Malzemelerin Potansiyel Çevresel Risklerinin Değerlendirilmesi.

Author:

MADENLİ Özgecan1ORCID,DEVECİ Ece Ümmü2ORCID

Affiliation:

1. NIGDE UNIVERSITY

2. Niğde Ömer Halisdemir Üniversitesi

Abstract

Graphene has been used in various applications in many fields. In recent years, its annual output has reached one hundred tons. Graphene has shown great potential in analytics, medicine, electronics, energy, agriculture, and environmental remediation. With increasing applications and production, the environmental risks and hazards of graphene have increased public concern. It was a key issue in environmental risk assessments of graphene materials. Microbial degradation of graphene and graphene oxide and its degradation by fungi in the environment have been previously studied. However, reduced graphene oxide (rGO) was difficult to degrade by fungi, and there were limited studies on this subject. In this study, the white rot fungus Phanerochaete chrysosporium was incubated with the culture system rGO for one week. The independent variables of microorganism concentration, pH, and rGO concentration were analyzed with the Box Behnken statistical method using response surface methodology. The potential environmental risks of graphene-based materials were assessed by examining the effect of rGO on the microbial activity of P. chrysosporium. The results revealed that rGO inhibited microbial activity during incubation and acted as an inhibitor in the medium. In addition, pH was found to be effective in inhibiting the environment, while microbial activity decreased at low pH. Moreover, P.chrysosporium was thought to degrade the oxygen groups on the rGO surface due to its decomposition ability. To test the environmental impact of graphene-based materials in general, it was aimed at unraveling the structure-activity relationships of the fungus P. chrysosporium.

Publisher

Marmara University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3