Deep Learning-Based Refactoring with Formally Verified Training Data

Author:

Szalontai Balázs,Bereczky Péter,Horpácsi Dániel

Abstract

Refactoring source code has always been an active area of research. Since the uprising of various deep learning methods, there have been several attempts to perform source code transformation with the use of neural networks. More specifically, Encoder-Decoder architectures have been used to transform code similarly to a Neural Machine Translation task. In this paper, we present a deep learning-based method to refactor source code, which we have prototyped for Erlang. Our method has two major components: a localizer and a refactoring component. That is, we first localize the snippet to be refactored using a recurrent network, then we generate an alternative with a Sequence-to- Sequence architecture. Our method could be used as an extension for already existing AST-based approaches for refactoring since it is capable of transforming syntactically incomplete code. We train our models on automatically generated data sets, based on formally verified refactoring definitions and by using attribute grammar-based sampling.

Publisher

Infocommunications Journal

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3