Evaluation of different extractors of features at the level of sentiment analysis

Author:

Es-sabery Fatima,Es-sabery Khadija,Garmani Hamid,Qadir Junaid,Hair Abdellatif

Abstract

Sentiment analysis is the process of recognizing and categorizing the emotions being expressed in a textual source. Tweets are commonly used to generate a large amount of sentiment data after they are analyzed. These feelings data help to learn about people's thoughts on a various range of topics. People are typically attracted for researching positive and negative reviews, which contain dislikes and likes, shared by the consumers concerning the features of a certain service or product. Therefore, the aspects or features of the product/ service play an important role in opinion mining. Furthermore to enough work being carried out in text mining, feature extraction in opinion mining is presently becoming a hot research field. In this paper, we focus on the study of feature extractors because of their importance in classification performance. The feature extraction is the most critical aspect of opinion classification since classification efficiency can be degraded if features are not properly chosen. A few scientific researchers have addressed the issue of feature extraction. And we found in the literature that almost every article deals with one or two feature extractors. For that, we decided in this paper to cover all the most popular feature extractors which are BOW, N-grams, TF-IDF, Word2vec, GloVe and FastText. In general, this paper will discuss the existing feature extractors in the opinion mining domain. Also, it will present the advantages and the inconveniences of each extractor. Moreover, a comparative study is performed for determining the most efficient combination CNN/extractor in terms of accuracy, precision, recall, and F1 measure.

Publisher

Infocommunications Journal

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3