Understanding Consumer Product Sentiments through Supervised Models on Cloud: Pre and Post COVID

Author:

Gupta Abhishek,Dwivedi Dwijendra Nath,Shah Jigar,Saroj Ravi

Abstract

While a lot of work is done on extracting sentiments and opinions in unstructured text, majority of it is focused on contextual sentiment mining and features that are more focused on sentiments. The team attempted to use contextual text analytics to identify product or service features that drives the sentiment of the user. This is done through application of cosine similarity and neural networks. Customers speak about product or service feature when it is important for the them. The second stage of the analysis is focused on supervised learning, that identifies key drivers of a product or service. It helps in deriving those elements which are subconsciously being evaluated by customers but not spoken. We also test the significant difference in views of people pre and post Covid in their reviews. We found that factors related to Covid have gone up by 30% but not statistically significant. Given the volume of data, the team has analyzed these on cloud to assess the cloud computing readiness for such analysis. Feedback around the post Covid topics helps us understand the issues that need to be addressed by restaurant industry.

Publisher

NeuroQuantology Journal

Subject

Information Systems and Management,Library and Information Sciences,Human-Computer Interaction,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Analytics in Educational Outcomes;Advances in Educational Technologies and Instructional Design;2024-06-28

2. Hyperautomation in Financial Services;Advances in Business Information Systems and Analytics;2024-06-28

3. From Peaks to Troughs;Advances in Business Information Systems and Analytics;2024-06-28

4. Harvesting Insights Unveiling the Interplay of Climate, Pesticides, and Rainfall in Agricultural Yield Optimization;Advances in Business Information Systems and Analytics;2024-06-28

5. Predictive Analytics for Reducing University Dropout Rates;Advances in Human and Social Aspects of Technology;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3