Behaviour Cloning for Autonomous Driving

Author:

Devi T. Kirthiga,Srivatsava Akshat,Mudgal Kritesh Kumar,Jayanti Ranjnish Raj,Karthick T.

Abstract

The objective of this project is to automate the process of driving a car. The result of this project will surely reduce the number of hazards happening everyday. Our world is in progress and self driving car is on its way to reach consumer‟s door-step but the big question still lies that will people accept such a car which is fully automated and driverless. The idea is to create an autonomous Vehicle that uses only some sensors (collision detectors, temperature detectors etc.) and camera module to travel between destinations with minimal/no human intervention. The car will be using a trained Convolutional Neural Network (CNN) which would control the parameters that are required for smoothly driving a car. They are directly connected to the main steering mechanism and the output of the deep learning model will control the steering angle of the vehicle. Many algorithms like Lane Detection, Object Detection are used in tandem to provide the necessary functionalities in the car.

Publisher

NeuroQuantology Journal

Subject

Information Systems and Management,Library and Information Sciences,Human-Computer Interaction,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions;Vehicular Communications;2024-01

2. Autonomous Driving System of Intelligent Connected Vehicle Based on ASAM Standard;Proceedings of the 4th International Conference on Big Data Analytics for Cyber-Physical System in Smart City - Volume 1;2023

3. Autonomous Ship Collision Avoidance Trained on Observational Data;Architecture of Computing Systems;2023

4. Robotic Actuation and Control of a Catheter for Structural Intervention Cardiology;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3