Context Aware Data Fusion on Massive IOT Data in Dynamic IOT Analytics

Author:

Saranya S.S.,Fatima Dr.N. Sabiyath

Abstract

Educational Data management is a critical task for the researchers due to mammoth data generated by sensors and IoT (Internet of Things) devices. Managing this huge volume of data, cleaning this data from impurities is an inherent need. DF (Data Fusion) processes combine data from multiple sources based on their similarity for an easy management. DF processes focus on many factors like nature of data and application that uses that data. Many DFAs (Data Fusion approaches) have been proposed without detailing on the context for integrating data in fusion tasks. This work attempts to cover this gap of context’s relevance by proposing a technique CDFT (Context aware Data Fusion technique). In this research work, initially data from IoT devices will be gathered and pre-processed to make it clear for the fusion processing. In this work, boundary based noise reduction algorithm is introduced for data pre-processing which attempts to label the unlabelled attributes in the data’s that are gathered, so that data fusion can be done accurately. After pre-processing Context aware data fusion is performed which will combine the data’s from multiple IoT devices together with the concern of context. Finally this combined data will be learnt using the convolution neural network for data fusion performance checking. The proposed CDFT is simulated on Matlab whose results prove that the proposed technique obtains optimal outcomes.

Publisher

NeuroQuantology Journal

Subject

Information Systems and Management,Library and Information Sciences,Human-Computer Interaction,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced decision-making in healthcare cloud-edge networks using deep reinforcement and lion optimization algorithm;Biomedical Signal Processing and Control;2024-06

2. Parameter Tuned Unsupervised Fuzzy Deep Learning for Clinical Data Classification;2022 International Conference on Electronic Systems and Intelligent Computing (ICESIC);2022-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3