Exploring collaborative filtering through K-Nearest Neighbors and Non-Negative Matrix Factorization

Author:

Raman Sagedur

Abstract

Collaborative filtering (CF) algorithms have received a lot of interest in recommender systems due to their ability to give personalized recommendations by exploiting user-item interaction data. In this article, we explore two popular CF methods—K-Nearest Neighbors (KNN) Regression and Non-Negative Matrix Factorization (NMF)—in detail as we dig into the world of collaborative filtering. Our goal is to evaluate their performance on the MovieLens 1M dataset and offer information about their advantages and disadvantages. A thorough explanation of the significance of recommender systems in contemporary content consumption settings is given at the outset of our examination. We look into Collaborative Filtering's complexities and how it uses user choices to produce tailored recommendations. Then, after setting the scene, we explain the KNN Regression and NMF approaches, going over their guiding principles and how they apply to recommendation systems. We conduct an extensive investigation of KNN Regression and NMF on the MovieLens 1M dataset to provide a thorough evaluation. We describe the model training processes, performance measures, and data pre-processing steps used. We measure and analyse the predicted accuracy of these strategies using empirical studies, revealing light on their effectiveness when applied to various user preferences and content categories.

Publisher

Krasnoyarsk Science and Technology City Hall

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3