Further Exploration of Deep Aggregation for Shadow Detection

Author:

Islam Md Jahidul ,Faruq OmarORCID

Abstract

Shadow detection is a fundamental challenge in the field of computer vision. It requires the network to understand the global semantics and local details of the image. All existing methods depend on the aggregation of the features of a multi-stage pre-trained convolution neural network but in comparison to high-level capabilities, low-level capabilities provide less to the detection performance. Using low-level features not only increases the complex difficulty of the network but also reduces the time efficiency. In this article, we propose a new shadow detector, which only uses high-level features and explores the complementary information between adjacent feature layers. Experiments show that the technique in this paper can accurately detect shadows and perform well compared with the most advanced methods. The detailed experiments performed in three public shadow detection datasets SUB, UCF, and ISTD demonstrate that the suggested method is efficient and stable.

Publisher

Krasnoyarsk Science and Technology City Hall

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of thyroid nodule ultrasound images by image feature extraction technique;Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies;2024-09-11

2. Brain tumor MRI identification and classification using DWT, PCA and kernel support vector machine;Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies;2024-03-28

3. Brain Tumor MRI Identification and Classification Using DWT, PCA, and KSVM;2023-02-09

4. Gamification of E-Learning Based on Information Technology;Networks and Systems in Cybernetics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3