Low light combining multiscale deep learning networks and image enhancement algorithm

Author:

Yu Xia,Bo Lin,Xin Chen

Abstract

Aiming at the lack of reference images for low-light enhancement tasks and the problems of color distortion, texture loss, blurred details, and difficulty in obtaining ground-truth images in existing algorithms, this paper proposes a multi-scale weighted feature low-light based on Retinex theory and attention mechanism. An image enhancement algorithm is proposed. The algorithm performs multi-scale feature extraction on low-light images through the feature extraction module based on the Unet architecture, generates a high-dimensional multi-scale feature map, and establishes an attention mechanism module to highlight the feature information of different scales that are beneficial to the enhanced image, and obtain a weighted image. High-dimensional feature map, the final reflection estimation module uses Retinex theory to build a network model, and generates the final enhanced image through the high-dimensional feature map. An end-to-end network architecture is designed and a set of self-regular loss functions are used to constrain the network model, which gets rid of the constraints of reference images and realizes unsupervised learning. The final experimental results show that the algorithm in this paper maintains high image details and textures while enhancing the contrast and clarity of the image, has good visual effects, can effectively enhance low-light images, and greatly improves the visual quality. Compared with other enhanced algorithms, the objective indicators PSNR and SSIM have been improved.

Publisher

Krasnoyarsk Science and Technology City Hall

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DETR-crowd is all you need;Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies;2023-05-30

2. Gamification of E-Learning Based on Information Technology;Networks and Systems in Cybernetics;2023

3. Gamification of the Graph Theory Course. Finding the Shortest Path by a Greedy Algorithm;Networks and Systems in Cybernetics;2023

4. Evaluation of the Prognostic Significance and Accuracy of Screening Tests for Alcohol Dependence Based on the Results of Building a Multilayer Perceptron;Artificial Intelligence Application in Networks and Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3