Design of Hybrid Controller using Qualitative Simulation Internal Modeling for Inverted Pendulum

Author:

Xia Chunrong,Qaisar IrfanORCID,Aslam Muhammad Shamrooz

Abstract

Multiple model methods for nonlinear dynamical system control are appealing because local models can be simple and obvious, and global dynamics can be studied in terms of transitions between small operating zones. In this study, we propose that using qualitative models strengthens the multiple model method even more by enabling each local model to explain a huge class of effective nonlinear dynamical systems. Furthermore, reasoning using qualitative models reveals weak necessary conditions sufficient to verify qualitative features like stability analysis. The authors show the method by creating a global controller for the free pendulum. In addition, local controllers are specified and validated by comparing their patterns to basic general qualitative models. Our proposed procedure establishes qualitative limitations on controller designs that are sufficient to ensure the necessary local attributes and to establish feasible transitions between local areas for the existing problems. As a result, the continuous phase picture may be reduced to a simple transitional graph. The degrees of freedom in the system that are not bound by the qualitative description are still accessible to the designer for optimization for any other purpose. An example of a pendulum plant illustrates the effectiveness of the proposed method.

Publisher

ASCEE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3