Syngas Generation Process Simulation: A Comparative Study

Author:

Oliveira Reyner P. P. de,Fuziki Maria E. K.,Costa Priscila M. L. Z.,Marcelo Tusset AngeloORCID,Lenzi Giane G.

Abstract

Methane reforming processes are of great importance for both the reduction of this greenhouse gas concentration in the atmosphere and for hydrogen production for energetic or chemical synthesis purposes. The use of Biogas in substitution for methane in reforming processes still provides a solution for the recovery of organic waste capable of producing Biogas. However, an in-depth analysis of the advantages of this substitution from the point of view of process yield is still lacking. Thus, the main contribution of the present research is the focus given to the comparison between methane and biogas as a reactant for the dry and steam reforming processes. In this work, a computational comparison of syngas production processes was performed, considering the system within the open-loop control. The software Aspen Hysys was used based on the minimization of Gibbs free energy in equilibrium. The parameters studied were: molar ratio of reagents (1-5), temperature (600-1000 °C), and pressure (1-5 bar). Dry methane reforming and steam methane reforming units were simulated, as well as both units using Biogas as a methane source. The plant was built in the simulator, and the results obtained indicated that high values in the molar ratio of CO2/CH4, CO2/Biogas, H2O/CH4, and H2O/Biogas, high temperatures, and low pressures favor the maximum conversion of methane. The use of Biogas in replacement of pure methane in the reform process proved to be advantageous for favoring the synthesis gas production reaction, besides adding value to a residue.

Publisher

ASCEE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3