Pulse Width Modulation Analysis of Five-Level Inverter- Fed Permanent Magnet Synchronous Motors for Electric Vehicle Applications

Author:

Tola Omokhafe J.,Umoh Edwin A.ORCID,Yahaya Enesi A.

Abstract

In recent times, intense research has been focused on the performance enhancement of permanent magnet synchronous motors (PMSM) for electric vehicle (EV) applications to reduce their torque and current ripples. Permanent magnet synchronous motors are widely used in electric vehicle systems due to their high efficiency and high torque density. To have a good dynamic and transient response, an appropriate inverter topology is required. In this paper, a five-level inverter fed PMSM for electric vehicle applications, realized via co-simulation in an electromagnetic suite environment with a reduced stator winding current of PMSM via the use of in-phase disposition (PD) pulse width modulation (PWM) techniques as the control strategy is presented. The proposed topology minimizes the total harmonic distortion (THD) in the inverter circuit and the motor fed and also improves the torque ripples and the steady-state flux when compared to conventional PWM techniques. A good dynamic response was achieved with less than 10A stator winding current, zero percent overshoot, and 0.02 second settling time synchronization. Thus, the stator currents are relatively low when compared to the conventional PWM. This topology contribution to the open problem of evolving strategies that can enhance the performance of electric drive systems used in unmanned aerial vehicles (UAV), mechatronics, and robotic systems.

Publisher

ASCEE Publications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of X-axis servo drive performance using PSO fuzzy control technique for double-axis dicing saw;Scientific Reports;2023-11-25

2. Performance Evaluation of Novel Rare Earth Free Magnets Based Motors for Electric Vehicle Applications;Tehnicki vjesnik - Technical Gazette;2023-08-15

3. Mathematical Modeling of PMSM for Simulation of Electric Drives and Comparison with Multi Level Inverters;2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2022-12-21

4. Mitigation of Electricity Theft at Low Distribution Voltage End Using Matrix Converter;2022 5th Information Technology for Education and Development (ITED);2022-11-01

5. Permanent Magnet Synchronous Generator Connected to a Grid via a High Speed Sliding Mode Control;International Journal of Robotics and Control Systems;2022-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3