Reduced Order and Observer-Based Reset Control Systems with Time Delays

Author:

K. Ali Awatef,Mahmoud MagdiSadek MostafaORCID

Abstract

This paper establishes a new mechanism to stabilize plants using reduced order reset controllers. The proposed method uses state feedback to change the dynamics of plants to guarantee oscillation behavior instead of stability, then the reset mechanism will lead to stability. We show that the base system could be unstable while the reset mechanism drives the states to the equilibrium point. The order of the reset controller equals the rank of the plant’s input matrix. We show that the controller dynamics force some states to converge to the equilibrium point within a finite time. The behavior of the rest of the plant’s states depends greatly on the selection of the state feedback gain which can be selected by any appropriate conventional method. Moreover, the stability of reset time-delay systems is addressed based on a similar theorem of the Lyapunov-Krasovskii theory. Sufficient conditions are given in terms of linear matrix inequalities to guarantee asymptotic stability of the overall dynamics. Simulation results are presented to demonstrate the effectiveness of the proposed reset approaches.

Publisher

ASCEE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3