Author:
Ma'arif Alfian,Iswanto Iswanto,Nuryono Aninditya Anggari,Alfian Rio Ikhsan
Abstract
Most systems nowadays require high-sensitivity sensors to increase its system performances. However, high-sensitivity sensors, i.e. accelerometer and gyro, are very vulnerable to noise when reading data from environment. Noise on data-readings can be fatal since the real measured-data contribute to the performance of a controller, or the augmented system in general. The paper will discuss about designing the required equation and the parameter of modified Standard Kalman Filter for filtering or reducing the noise, disturbance and extremely varying of sensor data. The Kalman Filter equation will be theoretically analyzed and designed based on its component of equation. Also, some values of measurement and variance constants will be simulated in MATLAB and then the filtered result will be analyzed to obtain the best suitable parameter value. Then, the design will be implemented in real-time on Arduino to reduce the noise of IMU (Inertial Measurements Unit) sensor reading. Based on the simulation and real-time implementation result, the proposed Kalman filter equation is able to filter signal with noises especially if there is any extreme variation of data without any information available of noise frequency that may happen to sensor- reading. The recommended ratio of constants in Kalman Filter is 100 with measurement constant should be greater than process variance constant.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献