EARLY-STAGE DIABETES RISK PREDICTION USING MACHINE LEARNING TECHNIQUES BASED ON ENSEMBLE APPROACH

Author:

Palabaş Tuğba1ORCID

Affiliation:

1. Zonguldak Bülent Ecevit Üniversitesi

Abstract

Diabetes Mellitus which is considered as one of the deadliest is a common, chronic disease. It also causes the emergence of many diseases, especially neuropathy, nephropathy and retinopathy. In this context, early diagnosis of the disease by accurately evaluating the symptoms and initiating a rapid treatment process is very important. The aim of this study is to present an effective model that can determine the diabetes risk in eary-stage with the best accuracy. To do so, the classification algorithms that are frequently used in diabetes risk estimation are supported with ensemble approaches. Firstly, the performance of Naive Bayes (NB), Trees-J48, k Nearest Neighbor (kNN) and Sequential Minimal Optimization (SMO) classifiers is analyzed separately by using a dataset of 520 samples collected with direct questionnaires from Sylhet Diabetes Hospital patients in Sylhet, Bangladesh. Then, the effects of Adabost, Bagging and Random Sub-Space (RSS) algorithms on classifier success are investigated and it is shown that the j48 classifier based on Adabost approach has the best accuracy in this dataset. Finally, the Wrapper Subset Eval (WSE) feature extraction algorithm is applied to reduce the estimation cost of diabetes and increase classification success. Thus, the best accuracy at 99% is achieved using reduced data set with proposed classifier method.

Publisher

Anadolu Universitesi Bilim ve Teknoloji Dergisi C : Yasam Bilimleri ve Biyoteknoloji

Reference39 articles.

1. [1] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. How cells obtain energy from food. In Molecular Biology of the Cell. 4th edition. Garland Science, 2002.

2. [2] Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in neurosciences, 36(10), 587-597, 2013.

3. [3] Brutsaert EF. Diabetes mellitus (DM). Merck Manual, 2020.

4. [4] International Diabet Federation, “IDF Diabetes Atlas”. https://diabetesatlas.org/(16.05.2023).

5. [5] Sağlık Bakanlığı, “Kronik Hastalıklar”. https://www.saglik.gov.tr/yazdir?2DE933CD45A7AD200096270A9E25E935 (16.05.2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3