Quantification of Solution-Free Blood Cell Staining by Sorption Kinetics of Romanowsky Stains to Agarose Gels

Author:

Bae Chae Yun1,Esmaeili Hamid2,Zamin Syed2,Seol Min Jeong3,Hwang Eunmi3,Beak Suk Kyung3,Song Younghoon3,Bharti Bhuvnesh2,Jung Jangwook2ORCID

Affiliation:

1. Noul Co., Ltd

2. Louisiana State University

3. Noul Co., Ltd.

Abstract

Imaging and quantification of stained blood cells are important for identifying the cells in hematology and for diagnosing diseased cells or parasites in cytopathology. Romanowsky staining have been used traditionally to produce hues in blood cells using anionic eosin Y and cationic methylene blue. While Romanowsky stains have been widely used in cytopathology, end-users have experienced problems with varying results in staining due to premature precipitation or evaporation of methanol, leading to the inherent inconsistency of solution-based Romanowsky staining. Here, we demonstrate that staining and destaining of blood smear are controllable by the contact time of agarose gel stamps. While the extent of staining and destaining are discernable by hue values of stamped red blood cells in micrographs, quantification of adsorbed and desorbed Romanowsky dye molecules (in particular, eosin Y, methylene blue, and azure B) from and to the agarose gel stamps needs a model that can explain the sorption process. We find predictable sorption of the Romanowsky dye molecules from the pseudo-second-order kinetics models for adsorption and the one phase decay model for desorption. Thus, the method of agarose gel stamping demonstrated here could be an alternative to solution-based Romanowsky staining with predictable quantity of sorption and timing of contact.

Publisher

American Chemical Society (ACS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solution-free and simplified H&E staining using a hydrogel-based stamping technology;Frontiers in Bioengineering and Biotechnology;2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3