Economic Evaluation of Infrastructures for Thermochemical Upcycling of Post-Consumer Plastic Waste

Author:

Ma Jiaze1ORCID,Tominac Philip1,Aguirre-Villegas Horacio1,Olafasakin Olumide2,Mba-Wright Mark2,Benson Craig H.1,Huber George W.1,Zavala Victor M.1

Affiliation:

1. University of Wisconsin–Madison

2. Iowa State University

Abstract

Thermochemical technologies, such as pyrolysis, offer a potentially scalable pathway for upcycling diverse types of plastic waste (PW) into value-added chemicals. However, deploying these technologies in waste management infrastructures is not straightforward because such systems involve a wide range of interdependent stakeholders, processing facilities, and products. In this work, we present a holistic optimization framework that integrates value-chain analysis, techno-economic analysis, and life-cycle analysis for investigating the economic viability and environmental benefits of upcycling infrastructures that collect, sort, clean, and process post-consumer PW for producing virgin polymer resins. The framework is applied to a case study in the upper Midwest region of the US. Our analysis reveals that the infrastructures are economically viable and could activate a regional circular economy that generates over 1 billion USD in annual profit. Moreover, our analysis reveals that this economy can reduce the carbon footprint of PW incineration by half. Our framework also determines the inherent values of post-consumer PW and of derived products such as plastic bales and pyrolysis oil; we find that, in these infrastructures, PW becomes a highly valuable feedstock with a market value of 500 USD/tonne. We discuss how this market value can generate incentives that foster more effective waste pre-sorting practices by consumers that can help bypass material recycling facilities and increase total system profit.

Publisher

American Chemical Society (ACS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3