Insight Derived from Molecular Docking and Molecular Dynamics Simulations into the Binding Interactions Between HIV-1 Protease Inhibitors and SARS-CoV-2 3CLpro

Author:

sang peng,Tian Shuhui,Meng Zhaohui,Yang Liquan

Abstract

<p>A novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) was identified from respiratory illness patients in Wuhan, Hubei Province, China, which has recently emerged as a serious threat to the world public health. Hower, no approved drugs have been found to effectively inhibit the virus. Since it has been reported that the HIV-1 protease inhibitors can be used as anti-SARS drugs by tegarting SARS-CoV 3CLpro, we choose six approved anti-HIV-1 drugs to investigate their binding interactions between 3CLpro, and to evaluate their potential to become clinical drugs for the new coronavirus pneumonia (COVID19) caused by SARS-CoV-2 infection. The molecular docking results indicate that, the 3CLpro of SARS-CoV-2 has a higher binding affinity for all the studied inhibitors than its SARS homologue. Two docking complexes (indinavir and darunavir) with high docking scores were futher subjected to MM-PBSA binding free energy calculations to detail the molecular interactions between these two proteinase inhibitors and the 3CLpro. Our results show that darunavir has the best binding affinity with SARS-CoV-2 and SARS-CoV 3CLpro among all inhibitors, indicating it has the potential to become an anti-COVID-19 clinical drug. The likely reason behind the increased binding affinity of HIV-1 protease inhibitors toward SARS-CoV2 3CLpro than that of SARS-CoV were investigated by MD simulations. Our study provides insight into the possible role of structural flexibility during interactions between 3CLpro and inhibitors, and sheds light on the structure-based design of anti-COVID-19 drugs targeting the SARS-CoV-2 3CLpro. </p><div><br></div>

Publisher

American Chemical Society (ACS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3