Flawed methods in “COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism”

Author:

Read Randy1ORCID

Affiliation:

1. University of Cambridge

Abstract

This is a critical commentary on an earlier submission by Liu and Li. The preprint from Liu & Li (https://doi.org/10.26434/chemrxiv.11938173.v7) puts forward hypotheses about a proposed role for proteins of SARS-CoV-2, the virus associated with Covid-19, in directly attacking haemoglobin in patients’ blood. Arguments for the hypotheses are based on computational methods: bioinformatics calculations searching for evidence that viral proteins share functional domains related to haem binding with human proteins, molecular modeling of viral proteins, and computational docking of these protein models with models of haem, porphyrin and haemoglobin. No experimental evidence is provided to support any of the conclusions. When interpreted according to accepted standards, these computational results do not hold up and do not provide support for the hypotheses. The interpretation of the search for shared functional domains suffers from a fundamental error in how the significance of the results is judged; when interpreted correctly, there is no evidence for these shared functional domains. Molecular modeling is carried out with tools that are easy to use but not best-in-class, and no allowance is made for uncertainty in the resulting atomic coordinates. Finally, the docking results are invalidated by a catastrophic error in their interpretation: the authors choose the docking trials that have the highest energies, whereas the most stable complexes are actually the ones that have the lowest energies and are therefore least strained. An addendum addresses flaws in a new version 8 from Liu & Li (https://doi.org/10.26434/chemrxiv.11938173.v8), which retracts most of their results from earlier versions but nonetheless continues to put forward the same conclusions on the basis of poorly-controlled docking calculations.

Publisher

American Chemical Society (ACS)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3