Fullerene functionalized halogen bonding heteroditopic hosts for ion-pair recognition

Author:

Bąk Krzysztof M.12ORCID,Marqes Igor3,Kuhn Heike1,Christensen Kirsten1,Félix Vítor3,Beer Paul D.1

Affiliation:

1. University of Oxford

2. University of Edinburgh

3. University of Aveiro

Abstract

Despite their hydrophobic surfaces with localized π-holes and rigid well-defined architectures providing a scaffold for preorganizing binding motifs, fullerenes remain unexplored as potential supramolecular host platforms for the recognition of anions. Herein, we present the first example of the rational design, synthesis, and unique recognition properties of novel fullerene-functionalized halogen bonding (XB) heteroditopic ion-pair receptors containing cation and anion binding domains spatially separated by C60. Fullerene spatial separation of the XB donors and the crown ether complexed potassium cation resulted in a rare example of an artificial receptor containing two anion binding sites with opposing preferences for hard and soft halides. Importantly, the incorporation of the C60 motif into the heteroditopic receptor structure has a significant effect on halide binding selectivity, which is further amplified upon K+ cation binding. The potassium cation complexed fullerene based receptors exhibit enhanced selectivity for the soft polarizable iodide ion which is assisted by the C60 scaffold preorganizing the potent XB-based binding domains, anion-π interactions and the exceptional polarizability of the fullerene moiety, as evidenced from computational DFT calculations. These observations serve to highlight the unique properties of fullerene surfaces for proximal charged guest binding with potential applications in construction of selective molecular sensors and modulating the properties of solar cell devices.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Chemical Society (ACS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3