Electron Transfer Limitation in Carbon Dioxide Reduction Revealed by Data-Driven Tafel Analysis

Author:

Brown Steven M.,Orella Michael1ORCID,Hsiao Yung Wei,Román-Leshkov YuriyORCID,Surendranath Yogesh,Bazant Martin Z.,Brushett Fikile

Affiliation:

1. Massachusetts Institute of Technology

Abstract

Carbon dioxide (CO2) recycling holds promise to mitigate anthropogenic emissions and to increase the sustainability of many chemical and fuel production processes. Despite marked advances in catalyst activity and selectivity at laboratory scale, fundamental understanding of the electrocatalytic reduction of CO2 remains limited, resulting in great uncertainty when extrapolating data to industrially relevant reaction rates. Importantly, the predominant models apply linear Tafel extrapolation, which drastically overpredicts the current density at large overpotentials. Researchers have posited several models to explain the curvature in Tafel behavior for CO2 reduction catalysis. Here we compare the ability of select models using Bayesian inference to explain curvature in Tafel behavior within the context of CO2 reduction to CO catalyzed by gold surfaces. By harvesting Tafel data on gold surfaces from multiple literature sources in a variety of reactor configurations, we identify three important features common to the aggregate data on Au-mediated CO2 reduction: (1) curvature in the Tafel plot at high overpotentials is only partly caused by mass transfer limitations; (2) the Marcus-Hush-Chidsey model for rate-limiting single-electron transfer kinetics provides the best fit to the data of the models tested; and finally, (3) the highly varied data collapse onto a single curve governed by the maximum predicted current in the electron-transfer-limited model. This analysis sets a foundation for determining more accurate activity-driving force relationships for CO2 reduction on electrocatalytic surfaces, both improving the quality of system-level analyses and motivating further research into the underlying mechanisms of CO2 reduction catalysis.

Publisher

American Chemical Society (ACS)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3