Millimeter-Sized Metal-Organic Framework Single Crystals without Inversion Symmetry: Controlled Growth and Self-Assembly Mechanism

Author:

Garcia Garfido Juan Manuel,enriquez javier,Chi-Duran Ignacio,Jara IvanORCID,Vivas LeonardoORCID,Hernandez Federico J.,Herrera Felipe1ORCID,Singh Dinesh Pratap

Affiliation:

1. Universidad de Santiago de Chile

Abstract

The controllable growth of non-centrosymmetric metal organic framework (MOF) beyond the conventional micrometer crystal dimensions would represent an enabling step in the development of MOF-based devices for coherent nonlinear optics. This goal has been elusive so far, as MOF crystal typical self-assemble under metastable synthesis conditions that have several competing crystallization pathways open, and only a modest amount of external control over the crystal nucleation and growth rates is currently possible. We overcome some of these issues and achieve the controlled growth of large single crystals of the non-centrosymmetric MOF Zn(3-ptz)2, with surface areas of up to 25 mm2 in 24 hours, in a single solvothermal reaction with in-situ ligand formation. No additional growth steps are necessary. We carry out a mechanistic study to unravel the reaction steps leading to the self-assembly of Zn(3-ptz)2 crystals, by identifying and isolating several intermediate crystal structures that directly connect with the target MOF, and reversibly interconverting between them. We identify the synthesis parameters that control the size and morphology of our target MOF crystal and model its nucleation and growth kinetics using ex-situ image processing data. Our work is a step forward is understanding and controlling the factors that stabilize the growth of high-quality MOF crystals with sizes that are relevant for coherent optics, thus untapping possible applications of metal-organic frameworks in classical and quantum communication technology.

Publisher

American Chemical Society (ACS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3