Potential Non-Covalent SARS-CoV-2 3C-like Protease Inhibitors Designed Using Generative Deep Learning Approaches and Reviewed by Human Medicinal Chemist in Virtual Reality

Author:

Zhavoronkov Alex,Zagribelnyy BogdanORCID,Zhebrak AlexanderORCID,Aladinskiy VladimirORCID,Terentiev VictorORCID,Vanhaelen QuentinORCID,Bezrukov Dmitry S.ORCID,Polykovskiy DaniilORCID,Shayakhmetov RimORCID,Filimonov AndreyORCID,Bishop Michael,McCloskey Steve,Leija Edgardo,Bright Deborah,Funakawa Keita,Lin Yen-Chu,Huang Shih-Hsien,Liao Hsuan-Jen,Aliper AlexORCID,Ivanenkov YanORCID

Abstract

<div> <div> <div> <div> <p>One of the most important SARS-CoV-2 protein targets for therapeutics is the 3C-like protease (main protease, Mpro). In our previous work1​we used the first Mpro crystal structure to become available, 6LU7. On February 4, 2020 Insilico Medicine released the first potential novel protease inhibitors designed using a ​de novo,​AI-driven generative chemistry approach. Nearly 100 X-ray structures of Mpro co-crystallized both with covalent and non-covalent ligands have been published since then. Here we utilize the recently published 6W63 crystal structure of Mpro complexed with a non-covalent inhibitor and combined two approaches used in our previous study: ligand-based and crystal structure-based. We published 10 representative structures for potential development with 3D representation in PDB format and welcome medicinal chemists for broad discussion and generated output analysis. The molecules in SDF format and PDB-models for generated protein-ligand complexes are available here and at https://insilico.com/ncov-sprint/.​Medicinal chemistry VR analysis was provided by ​Nanome team and the video of VR session is available at ​https://bit.ly/ncov-vr.​ </p> </div> </div> </div> </div>

Publisher

American Chemical Society (ACS)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3