Affiliation:
1. Sichuan University of Science & Engineering
Abstract
The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory infection caused by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat coronavirus. Due to the limits of the existing experimental tools, many protein roles of novel coronavirus including ORF8 are still unclear. Therefore, in the current scene of an emergency epidemic, it is of high scientific significance to predict the biological role of viral proteins through bioinformatics methods. In this study, conserved domain analysis, homology modeling, and molecular docking were used to compare the biological roles of certain proteins of the novel coronavirus. The results showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively, while orf1ab, ORF10 and ORF3a proteins could coordinately attack heme to dissociate the iron to form the porphyrin. The mechanism seriously interfered with the normal heme anabolic pathway of the human body, being expected to result in human disease. According to the validation analysis of these finds, Chloroquine could prevent orf1ab, ORF3a and ORF10 to attack the heme to form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent. Therefore, this research is of high value to contemporary biological experiments, disease prevention and clinical treatment.
Publisher
American Chemical Society (ACS)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献