COVID-19:Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism

Author:

wenzhong liu1ORCID,hualan Li

Affiliation:

1. Sichuan University of Science & Engineering

Abstract

The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory caused by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat coronavirus. In this study, conserved domain analysis, homology modeling, and molecular docking were used to compare the biological roles of specific proteins of the novel coronavirus. The results showed that some viral structural and nonstructural proteins could bind to the porphyrin, respectively. At the same time, orf1ab, ORF10 and ORF3a proteins coordinated to attack heme on the 1-beta chain of hemoglobin, dissociating iron to form porphyrin. Deoxyhemoglobin is more vulnerable to virus attacks than oxidized hemoglobin. The attack will cause less and less hemoglobin that can carry oxygen and carbon dioxide, producing symptoms of respiratory distress. Virus attack damaged many organs and tissues. Lung cells are toxic and inflammatory due to derivatives produced by the attack, which eventually resulted in ground-glass-like lung images. Capillaries easily broken due to inflammation. Proteins such as fibrinogen filled the capillaries' cracks through the coagulation reaction. Therefore, many fibrin and thrombus gathered in the lung tissue of critically ill patients. The mechanism also interfered with the normal heme anabolic pathway of the human body, expecting to result in human disease. This paper is only for academic discussion, the correctness of the theory needs to be confirmed by other experiments. According to the reader's suggestion, the content of the drug-related efficacy analysis has been deleted. Due to the side effects of drugs, please consult a qualified doctor for detailed treatment information, and do not take the drug yourself. We look forward to these discoveries bringing more ideas to people and inspiring people's confidence in defeating the virus.

Publisher

American Chemical Society (ACS)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3