Self-Driving Laboratories for Chemistry and Materials Science

Author:

Tom Gary12ORCID,Schmid Stefan P.3ORCID,Baird Sterling G.4,Cao Yang14,Darvish Kourosh14,Hao Han14,Lo Stanley1,Pablo-García Sergio1ORCID,Rajaonson Ella M.21,Skreta Marta12,Yoshikawa Naruki12ORCID,Corapi Samantha1,Akkoc Gun Deniz56ORCID,Strieth-Kalthoff Felix17ORCID,Seifrid Martin18ORCID,Aspuru-Guzik Alán1429

Affiliation:

1. University of Toronto

2. Vector Institute

3. ETH Zurich

4. Acceleration Consortium

5. Forschungszentrum Jülich

6. Friedrich-Alexander-Universität Erlangen-Nürnberg

7. University of Wuppertal

8. North Carolina State University

9. Canadian Institute for Advanced Research

Abstract

Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with the autonomization of experiment planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review article provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research, and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.

Funder

Natural Sciences and Engineering Research Council of Canada

Defense Advanced Research Projects Agency

Government of Ontario

Bundesministerium für Bildung und Forschung

Schmidt Family Foundation

Canada First Research Excellence Fund

Mitacs

Publisher

American Chemical Society (ACS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3