Extreme Scalability of DFT-Based QM/MM MD Simulations Using MiMiC

Author:

Bolnykh Viacheslav1ORCID,Olsen Jógvan Magnus HaugaardORCID,Meloni Simone,Bircher Martin P.,Ippoliti Emiliano,Carloni Paolo,Rothlisberger Ursula

Affiliation:

1. RWTH Aachen / The Cyprus Institute / Forschungszentrum Juelich

Abstract

We present a highly scalable DFT-based QM/MM implementation developed within MiMiC, a recently introduced multiscale modeling framework that uses a loose-coupling strategy in conjunction with a multiple-program multiple-data (MPMD) approach. The computation of electrostatic QM/MM interactions is parallelized exploiting both distributed- and shared-memory strategies. Here, we use the efficient CPMD and GROMACS programs as QM and MM engines, respectively. The scalability is demonstrated through large-scale benchmark simulations of realistic biomolecular systems employing GGA and hybrid exchange-correlation functionals. We show that the loose-coupling strategy adopted in MiMiC, with its inherent high flexibility, does not carry any significant computational overhead compared to a tight-coupling scheme. Furthermore, we demonstrate that the adopted parallelization strategy enables scaling of up to 13,000 CPU cores with efficiency above 70%, thus making DFT-based QM/MM MD simulations using hybrid functionals at the nanosecond scale accessible.

Publisher

American Chemical Society (ACS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3