Electrochemical capture and conversion of CO2 into syngas

Author:

Kim Yongwook1,Lees Eric W.1,Donde Chaitanya1,Waizenegger Christopher E.B.1,Simpson Grace L.1,Valji Akshi1,Berlinguette Curtis P.1ORCID

Affiliation:

1. University of British Columbia

Abstract

For waste CO2 to be electrolytically converted into higher-value chemicals and fuels, electrolyzers that drive the CO2 reduction reaction need to be integrated with upstream CO2 capture units. However, this has not yet been demonstrated because of the large operational gap for the capture and conversion steps. Here, we report a coupled carbon reactor that captures and converts CO2 into syngas with a 1.7:1 ratio of H2 to CO. The resulting syngas can be utilized in the production of a wide range of valuable chemicals. This CCR uses a packed bed absorption column (“capture unit”) to react alkaline aqueous solution enriched in K2CO3(aq) with CO2 to form bicarbonate enriched solutions (“reactive carbon solutions”). These reactive carbon solutions are then fed into an electrochemical reactor (“bicarbonate electrolyzer”) to form CO(g) and OH– product. This alkaline product is then passed through a gas-liquid separator (“separator”) and recycled back to the capture unit for further reaction with CO2(g). These collective elements close the full loop for CO2 capture and conversion. An electrochemically inert CO2 capture promoter (glycine) was used to better match the CO2 capture rates in the absorption column to the OH– production rates in the electrolyzer, thereby producing CO at steady-state without intervention. We demonstrate that the CCR captures and converts CO2 from simulated flue gas (20% CO2; 80% N2) into CO with a Faradaic efficiency of 30% at 100 mA cm–2 for 30 hours of operation.

Publisher

American Chemical Society (ACS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3