Affiliation:
1. Max-Planck-Institut für Kohlenforschung
2. University of Bonn
Abstract
Nowadays, many chemical investigations are supported by routine calculations of molecular structures, reaction energies, barrier heights, and spectroscopic properties. The lion's share of these quantum-chemical calculations applies density functional theory (DFT) evaluated in atomic-orbital basis sets. This work provides best-practice guidance on the numerous methodological and technical aspects of DFT calculations in three parts: Firstly, we set the stage and introduce a step-by-step decision tree to choose a computational protocol that models the experiment as closely as possible. Secondly, we present a recommendation matrix to guide the choice of functional and basis set depending on the task at hand. A particular focus is on achieving an optimal balance between accuracy, robustness, and efficiency through multi-level approaches. Finally, we discuss selected representative examples to illustrate the recommended protocols and the effect of methodological choices.
Funder
Deutsche Forschungsgemeinschaft
Max-Planck-Gesellschaft
Publisher
American Chemical Society (ACS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献