Identifying Molecules as Biosignatures with Assembly Theory and Mass Spectrometry

Author:

Marshall stuart,Mathis Cole,Carrick Emma,Keenan Graham,Cooper Geoffrey,Graham Heather,Bame Jessica,Craven Matthew,Bell Nicola,Gromski Piotr S.,Swart MarcelORCID,Moore Douglas G.ORCID,Walker Sara,Cronin Leroy

Abstract

<p><b>The search for evidence of life elsewhere in the universe is hard because it is not obvious what signatures are unique to life. Here we postulate that complex molecules found in high abundance are universal biosignatures as they cannot form by chance. To explore this, we developed the first intrinsic measure of molecular complexity that can be experimentally determined, and this is based upon a new approach called assembly theory which gives the molecular assembly number (MA) of a given molecule. MA allows us to compare the intrinsic complexity of molecules using the minimum number of steps required to construct the molecular graph starting from basic objects, and a probabilistic model shows how the probability of any given molecule forming randomly drops dramatically as its MA increases. To map chemical space, we calculated the MA of <i>ca.</i> 2.5 million compounds, and collected data which showed the complexity of a molecule can be experimentally determined by using three independent techniques including infra-red spectroscopy, nuclear magnetic resonance, and by fragmentation in a mass spectrometer, and this data has an excellent corelation with the values predicted from our assembly theory. We then set out to see if this approach could allow us to identify molecular biosignatures with a set of diverse samples from around the world, outer space, and the laboratory including prebiotic soups. <a>The results show that </a><a>there is a non-living to living threshold in MA complexity and the higher the MA for a given molecule, the more likely that it had to be produced by a biological process</a>. This work demonstrates it is possible to use this approach to build a life detection instrument that could be deployed on missions to extra-terrestrial locations to detect biosignatures, map the extent of life on Earth, and be used as a molecular complexity scale to quantify the constraints needed to direct prebiotically plausible processes in the laboratory. Such an approach is vital if we are going to find new life elsewhere in the universe or create <i>de-novo</i> life in the lab. </b></p>

Publisher

American Chemical Society (ACS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3