Model Structure of Fetal Health Status Prediction

Author:

Bahar Emirul,Agushinta R. DewiORCID,Arimbi Yuti Dewita,Reksoprodjo Mariono

Abstract

One of the issues of pregnant mothers in Indonesia is their access speed and accuracy services availability towards the prediction of fetus or baby conceived during pregnancy. Thus, the research aimed to obtain the ability to predict three ranges of a fetal target, namely normal, risk, and abnormal condition. This research emphasized the modeling aspect of supervised learning using seven different algorithms to obtain an optimal working score. Those are Decision Tree, Gradient Boosting, Random Forest, SVM, k-NN, AdaBoost, and Stochastic Gradient Descent (SGD). The structure process is mainly divided into two steps, pre-process model and the prediction model. An early data pre-process is needed before executing. Prediction output indicated that dataset test is valid, and can be proven by comparing between the testing data table and prediction and testing table diagram. The resulting model has described the sequence for simulating the training and testing data model to produce the highest working score from the seven selected algorithms. The simulated data based on the model created is proved its validity thru three main filter processes, which are missing data solution, outlier data control, and data normalization. The result obtained a working score that has data proximity with a low score range of 0.063 from model evaluation, confusion matrix, and prediction output.

Publisher

Lembaga Publikasi Ilmiah dan Penerbitan Universitas Muhammadiyah Purwokerto

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive Review of Fetal Health Monitoring using DL and ML techniques with Ultrasound and Cardiotocography data;2024 International Conference on Emerging Systems and Intelligent Computing (ESIC);2024-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3