Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions

Author:

Calderón-Macías Carlos12,Luke Barbara12

Affiliation:

1. Formerly Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas # 152, México D.F. 7730, México; presently GX Technology, 2101 City West Boulevard, Building III, Suite 900, Houston, Texas 77042.

2. Department of Civil and Environmental Engineering, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4015.

Abstract

Inversion of shear-wave velocity profiles from phase-velocity measurements of Rayleigh-wave energy for sites containing stiff layers can be erroneous if such layers are not characterized in the starting or reference model. Incorporation of a priori knowledge then is key for converging upon a realistic or meaningful solution. Resolving soil profiles in desert regions where stiff layers cemented with calcium carbonate are intermixed with softer, uncemented media is an application for which locating shallow stiff inclusions has important implications. Identification of the stiff layers is critical for foundation design and cost estimating of excavations. A parameterization that seems adequate for this problem is to solve for anticipated high-stiffness layers embedded in a coarser (background) profile that captures the general shear-wave velocity trend of the study area. The optimization is accomplished by using simulated annealing. Uncertainty measures resulting from the inversion are helpful for describing the influence of the parameterization on final model estimates.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3