Exploration for a cave by magnetic and electrical resistivity surveys: Ayvacık Sinkhole example, Bozdağ, İzmir (western Turkey)

Author:

Balkaya Çağlayan1,Göktürkler Gökhan2,Erhan Zülfikar2,Levent Ekinci Yunus3

Affiliation:

1. Süleyman Demirel University, Department of Geophysical Engineering, West Campus, Isparta, Turkey..

2. Dokuz Eylül University, Department of Geophysical Engineering, Tınaztepe Campus, Buca/İzmir, Turkey..

3. Çanakkale Onsekiz Mart University, Department of Geophysical Engineering, Terzioğlu Campus, Çanakkale, Turkey..

Abstract

Geophysical survey techniques have been successfully applied to near-surface cave detection in karstic terrains. We used magnetic and electrical resistivity surveys to delineate the karstic structure of the Ayvacık Sinkhole, which may be considered to be a vertical cave. The magnetic-total-field-anomaly map helped reveal the metamorphic and sedimentary units in the study area. The total-horizontal-gradient map, which was based on a calculated pseudogravity anomaly, successfully identified the contact between the limestone unit and the cave system. Using these results, we positioned and carried out a vertical electrical sounding (VES) survey with a Schlumberger array along a line that consisted of 11 stations. The VES data were then processed using a 1D global optimization technique, which used a genetic algorithm and a 2D linearized least-squares algorithm. The results were generally in good agreement with each other, and together they pointed out three geologic layers: (1) an overburden layer ([Formula: see text]), (2) an approximately 25-m-thick alluvial fill (100–316 Ωm), and (3) a limestone unit (316–3162 Ωm); and also suggested the existence of a high-resistive anomaly ([Formula: see text]), possibly a karstic cave, located at the depth of approximately 40 m. Also, the results suggested that the buried limestone unit had an undulating karstic topography including a probable pinnacle structure. A synthetic modeling study was carried out, and it validated the reliability of the results. Finally, our findings indicated that the geophysical survey techniques used here were successful in detecting a cave located deep enough to make human exploration difficult.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3