Bayesian survey design to optimize resolution in waveform inversion

Author:

Djikpesse Hugues A.123,Khodja Mohamed R.123,Prange Michael D.123,Duchenne Sebastien123,Menkiti Henry123

Affiliation:

1. Schlumberger-Doll Research, Department of Mathematics & Modeling, Cambridge, Massachusetts, USA..

2. Schlumberger-Doll Research, Department of Mathematics & Modeling, Cambridge, Massachusetts, USA.presently, Mines Paristech, Paris, France,.

3. Schlumberger, WesternGeco GeoSolutions, Houston, Texas, USA..

Abstract

We describe a Bayesian methodology for designing seismic experiments that optimally maximize model-parameter resolution for imaging purposes. The proposed optimal experiment design algorithm finds the measurements that are likely to optimally reduce the expected uncertainty on the model parameters. This Bayesian [Formula: see text]-optimality-based algorithm minimizes the volume of the expected confidence ellipsoid and leads to the maximization of the expected resolution of the model parameters. Computational efficiency is achieved by a greedy algorithm in which the design is sequentially improved. In contrast to minimizing the uncertainty volume over the entire subsurface simultaneously, a refinement of the algorithm minimizes the marginal uncertainties in a region of interest. Minimizing marginal uncertainties simultaneously accounts for quantitative prior model uncertainties while honoring a qualitative focus on particular regions of interest. The benefits of the proposed method over traditional non-Bayesian ones are demonstrated with several geophysical examples. These include reducing large seismic data volumes for real-time imaging and solving the problem of designing seismic surveys that account for source bandwidth, signal-to-noise ratio, and attenuation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3