Mapping groundwater salinization using transient electromagnetic and direct current resistivity methods in Azraq Basin, Jordan

Author:

Abu Rajab Jafar Sadi1,El-Naqa Ali Ramadan2

Affiliation:

1. Hashemite University, Faculty of Natural Resources and Environment, Department of Earth Sciences and Environment, Zarqa, Jordan..

2. Hashemite University, Faculty of Natural Resources and Environment, Department of Water Management and Environment, Zarqa, Jordan..

Abstract

Hydrogeophysical characterization using the transient electromagnetic method (TEM) and the DC resistivity sounding (VES) method was implemented in the central part of Azraq Basin (Qa Basin), Jordan, to identify and map the spatial distribution of shallow fresh and saline groundwater in the upper aquifer systems. The alluvium (Al) and chert limestone (URC) shallow aquifers show different degrees of groundwater salinization. The range of groundwater resistivity varies from 0.06 to 10.8 ohm-m. Saline groundwater was detected at depths between 5 to 30 m where the aquifers have a wide spectrum of resistivity values from 0.14 to 120 ohm-m. The integrated geophysical and hydrogeologic models are significantly correlated in chloride concentration, groundwater resistivity, and aquifer resistivity. Using 1D inversion results from the TEM and VES soundings in addition to quasi-3D modeling (1D spatially constrained inversion) at selected TEM sites, groundwater resistivity variation was attributed to two different salinization mechanisms. First, the spatial distribution of the salt content in mud flat deposits had a significant effect on the groundwater salinity. Second, in situ dissolution of near-surface rock-forming salts occurred at areas away from the mud flat deposits. The proposed hydrogeophysical models revealed the potential effect of both mechanisms in the study area.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3