Streamline-based integration of time-lapse seismic and production data into petroleum reservoir models

Author:

Rey Alvaro1,Bhark Eric2,Gao Kai2,Datta-Gupta Akhil2,Gibson Richard2

Affiliation:

1. Formerly Texas A & M University, College Station, Texas, USA; presently Chevron Energy Technology Company, Reservoir Simulation Support, San Ramon, California, USA..

2. Texas A & M University, College Station, Texas, USA..

Abstract

We have developed an efficient approach of petroleum reservoir model calibration that integrates 4D seismic surveys together with well-production data. The approach is particularly well-suited for the calibration of high-resolution reservoir properties (permeability) because the field-scale seismic data are areally dense, whereas the production data are effectively averaged over interwell spacing. The joint calibration procedure is performed using streamline-based sensitivities derived from finite-difference flow simulation. The inverted seismic data (i.e., changes in elastic impedance or fluid saturations) are distributed as a 3D high-resolution grid cell property. The sensitivities of the seismic and production surveillance data to perturbations in absolute permeability at individual grid cells are efficiently computed via semianalytical streamline techniques. We generalize previous formulations of streamline-based seismic inversion to incorporate realistic field situations such as changing boundary conditions due to infill drilling, pattern conversion, etc. A commercial finite-difference flow simulator is used for reservoir simulation and to generate the time-dependent velocity fields through which streamlines are traced and the sensitivity coefficients are computed. The commercial simulator allows us to incorporate detailed physical processes including compressibility and nonconvective forces, e.g., capillary pressure effects, while the streamline trajectories provide a rapid evaluation of the sensitivities. The efficacy of our proposed approach was tested with synthetic and field applications. The synthetic example was the Society of Petroleum Engineers benchmark Brugge field case. The field example involves waterflooding of a North Sea reservoir with multiple seismic surveys. In both cases, the advantages of incorporating the time-lapse variations were clearly demonstrated through improved estimation of the permeability heterogeneity, fluid saturation evolution, and swept and drained volumes. The value of the seismic data integration was in particular proven through the identification of the continuity in reservoir sands and barriers, and by the preservation of geologic realism in the calibrated model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3